On Semantic Issues in Game-theoretic Rough Set Model

Nouman Azam and JingTao Yao

Department of Computer Science University of Regina

{azam200n,jtyao}@cs.uregina.ca

June 21, 2013

On Semantic Issues in Game-theoretic Rough Set Model

> < ≧ > < ≧ > ≧ < ⊘ < </td>Nouman Azam and JingTao Yao

University of Regina

Outline

- **2** Probabilistic Rough Sets
- **3** Game-theoretic Rough Sets
- **4** Semantic Issues in GTRS
- **5** Interpreting an Existing Formulation

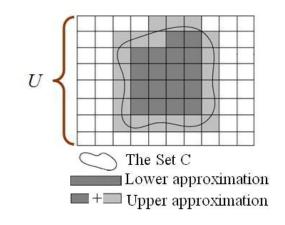
On Semantic Issues in Game-theoretic Rough Set Model

University of Regina

Rough Sets

- Sets derived from imperfect, imprecise, and incomplete data may not be able to be precisely defined.
- Sets have to be approximated.
- Approximating a concept *C* with objects in *U*.
 - Lower approximation given by $apr(C)\{x \in U | x \subset C\}$.
 - Upper approximation given by $\overline{\overline{apr}}(C)\{x \in U | x \cap C \neq \phi\}.$
- The three regions defined by the approximations.
 - $POS(C) = \underline{apr}(C)$
 - $BND(C) = \overline{\overline{apr}}(C) \underline{apr}(C)$.
 - $NEG(C) = U (POS(C) \bigcup BND(C)).$

Rough Sets



On Semantic Issues in Game-theoretic Rough Set Model

Nouman Azam and JingTao Yao

University or Regina

Probabilistic Rough Sets

- Defining the approximations in terms of conditional probabilities and a pair of thresholds (Yao, 2008).
 - The (α, β) thresholds for determining the probabilistic rough set approximations given by,

$$\underline{apr}_{(\alpha,\beta)}(C) = \bigcup \{ [x] \in U/E \mid Pr(C|[x]) \ge \alpha \},\$$
$$\overline{apr}_{(\alpha,\beta)}(C) = \bigcup \{ [x] \in U/E \mid Pr(C|[x]) > \beta \}.$$
(1)

• Probabilistic positive, negative and boundary regions:

$$POS_{(\alpha,\beta)}(C) = \{x \in U \mid Pr(C|[x]) \ge \alpha\},\$$

$$NEG_{(\alpha,\beta)}(C) = \{x \in U \mid Pr(C|[x]) \le \beta\},\$$

$$BND_{(\alpha,\beta)}(C) = \{x \in U \mid \beta < Pr(C|[x]) < \alpha\}.$$
(2)

Yao, Y. Y., (2008). Probabilistic rough set approximations, International Journal of Approximate Reasoning, 49.

University

Three-way Decisions with Probabilistic Rough Sets

• Three-way decisions are made according to the following rules.

Acceptance:	$\text{if } P(C [x]) \geq \alpha,$	
Rejection:	if $P(C [x]) \leq \beta$, and	
Deferment:	if $\beta < P(C [x]) < \alpha$.	(3)

 A major difficulty is the interpretation and determination of the (α, β) thresholds (Yao, 2011).

Yao, Y.Y., (2011). Two semantic issues in a probabilistic rough set model. Fundamenta Informaticae 108(3-4).

On Semantic Issues in Game-theoretic Rough Set Model

Universit

Determination of (α, β) Probabilistic Thresholds

• Realizing the determination of probabilistic thresholds as an optimization based on criterion *C*.

arg max
$$C(\alpha, \beta)$$
, where
 $C(\alpha, \beta) = C_P(\alpha, \beta) + C_N(\alpha, \beta) + C_B(\alpha, \beta).$ (4)

- Many attempts have been made to determine the thresholds.
 - Optimization viewpoint (Jia et al., 2011),
 - Multi-view model(Li and Zhou, 2011),
 - Method using probabilistic model criteria (Liu et al., 2011),
 - Information-theoretic interpretation (Deng and Yao, 2012),
 - Game-theoretic framework (Herbert and Yao, 2011).
- We consider the game-theoretic rough set model.

Game Theory

- Game theory is a core subject in decision sciences.
- The basic game components include.
 - Players.
 - Strategies.
 - Payoffs.
- A classical example in Game Theory: The prisoners dilemma.

		<i>p</i> ₂	
		confess	don't confess
	confess	p_1 serves 10 year,	p_1 serves 0 year
n .		p_2 serves 10 years	p_2 serves 20 years
$p_1 =$	don't confess	p_1 serves 20 year,	p_1 serves 1 year,
		p_2 serves 0 years	p_2 serves 1 years

On Semantic Issues in Game-theoretic Rough Set Model

A Formal Game Definition

- A game may be formally defined as a tuple {*P*, *S*, *u*} (Brown and Shoham, 2008),
 - *P* is a finite set of *n* players, indexed by *i*,
 - S = S₁ × ... × S_n, where S_i is a finite set of strategies available to player i. Each vector s = (s₁, s₂, ..., s_n) ∈ S is called a strategy profile where player i selects strategy s_i.
 - $u = (u_1, ..., u_n)$ where $u_i : S \mapsto \Re$ is a real-valued utility or payoff function for player *i*.

Brown L. K. and Shoham, Y., (2008). Essentials of Game Theory: A Concise Multidisciplinary Introduction.

Univers

Game-theoretic Rough Sets

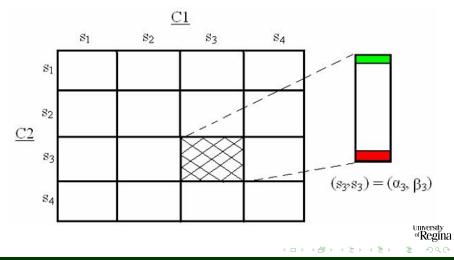
- Utilizing a game-theoretic setting for analyzing rough sets.
- Determining the probabilistic thresholds to obtain the three regions and the implied three-way decisions.
- Current GTRS based formulations.
 - Game for improving classification ability (Herbert and Yao, 2011).
 - Game for obtaining effective rules (Azam and Yao, 2012).
 - Game for reducing region uncertainties (Azam and Yao, 2013).
 - Game for optimizing Gini Coefficient (Yan, 2011).

Herbert, J.P., Yao, J.T. (2011). Game-theoretic rough sets. Fundamenta Informaticae 108.
Azam, N., Yao, J. T., (2012). Multiple criteria decision analysis with GTRS. In: (RSKT'12).
Azam, N., Yao, J. T., (2013). Analyzing uncertainties of probabilistic rough set regions with GTRS. IJAR.
Yan, Z., (2013). Optimizing GINI coefficient of probabilistic rough set regions using GTRS. In: (CCECE13).

- 4 同 1 - 4 回 1 - 4 回 1

University

Game-theoretic Rough Sets



On Semantic Issues in Game-theoretic Rough Set Model

Semantic Issues in GTRS

- Interpreting the GTRS based game and its components.
 - Interpreting the players based on application requirements.
 - Understanding strategies based on threshold configuration levels.
 - Strategy profiles and their mappings to probabilistic thresholds.
- Meaning of determined thresholds based on a game outcome.

Interpreting the GTRS based Game

- Implementing a game based on an application needs.
 - The needs may be represented in the form of multiple performance evaluating factors or criteria such as cost, risk, accuracy etc.
- A multi-objective optimization problem may be realized to meet these application needs.

arg min
$$C(\alpha, \beta)$$
, where
 $C(\alpha, \beta) = (C_1(\alpha, \beta), C_2(\alpha, \beta), ..., C_n(\alpha, \beta))$ (5)

• The GTRS based game considers the above optimization as game-theoretic competition or cooperation among multiple criteria.

Interpreting the Players

- Selecting the players to highlight different aspects of application specific needs.
- Example: considering an application which requires an improvement in the classification ability.
 - Accuracy represents one aspect of the requirement.
 - Precision represents another aspect.
- The players may compete or cooperate to reach these game objectives.

Interpreting the Strategies

- Considering strategies as different threshold modification levels.
- Using functions to represent startegies.
 - A strategy s_i of a player j that changes the thresholds, we may use functions to represent s_i as,

$$s_i = \{ (f_i^j(\alpha), g_i^j(\beta)) \mid f_i^j(\alpha) = \alpha \pm c_1, \ g_i^j(\beta) = \beta \pm c_2) \}$$
(6)

 c_1, c_2 are the amount by which we modify the thresholds.

 The threshold values calculated by the functions may be denoted by,

$$f_{i}^{j}(\alpha) = \alpha \pm c_{1} = \alpha_{i}^{j}$$

$$g_{i}^{j}(\beta) = \beta \pm c_{2} = \beta_{i}^{j}$$

$$(7)$$
University
"Regina

Mapping a Strategy to a Threshold Pair

- Associating a strategy with a threshold pair.
 - The strategy s_i of player j based on Eq.(6)-(7) can now be associated with (α^j_i, β^j_i).
- The functions (f^j_i, g^j_i) provides a mapping that maps each strategy s_i of player j to a threshold pair.

$$(f_i^j, g_i^j)$$
: $s_i \longmapsto (D_\alpha, D_\beta),$ (8)

where $D_{\alpha} = D_{\beta} = [0, 1]$ are the domains of thresholds.

• In summary, each strategy leads to a threshold pair.

Interpreting the Strategy Profiles

- Strategy profiles are the possible combination of strategies in a game.
- Considering a special strategy profile $s = (s_1, s_2, ..., s_n)$, where player j plays s_j .
 - This may be represented in terms of functions defined for individual strategies in equation (6).

$$s = (s_1, s_2, ..., s_n) = ((f_1^1(\alpha), g_1^1(\beta)), ..., (f_n^n(\alpha), g_n^n(\beta)))$$
(9)

which leads to threshold pairs,

$$s = (s_1, s_2, ..., s_n) = ((\alpha_1^1, \beta_1^1), ..., (\alpha_n^n, \beta_n^n))$$
(10)

Mapping a Strategy Profile to a Threshold pair

- Realizing a strategy profile and its mapping to a threshold pair.
 - Additional functions may be used for this purpose.

$$s = (s_1, s_2, ..., s_n) = \{(H_s(\alpha_1^1, \alpha_2^2, ..., \alpha_n^n), O_s(\beta_1^1, \beta_2^2, ..., \beta_n^n))\},\$$

where $H_s(\alpha_1^1, \alpha_2^2, ..., \alpha_n^n) = \alpha_s, O_s(\beta_1^1, \beta_2^2, ..., \beta_n^n) = \beta_s.$ (11)

- The strategy profile s is now associated with (α_s, β_s) .
- The functions (*H_s*, *O_s*) maps a strategy profile *s* to another threshold pair,

$$(H_s, O_s): s \longmapsto (D_\alpha, D_\beta).$$
(12)

^{or}Regina

The GTRS based Game

- A GTRS based game has now the form $\{P, S, u\}$, where
 - *P* = a finite set of *n* players considered as criteria for evaluating application specific requirements.
 - S = S₁ × ... × S_n, where S_j is a finite set of strategies available to player j. Each s_i of player j maps to a threshold pair by using functions f^j_i and g^j_i given by (f^j_i(α), g^j_i(β)):s_i → (D_α, D_β),
 - Each strategy profile of the form s = (s₁, s₂, ..., s_n) also maps to a threshold pair given by (H_s, O_s):s → (D_α, D_β).
 - $u = (u_1, ..., u_n)$ where $u_j : S \mapsto \Re$ is a real-valued utility or payoff function for player *j*.

Interpreting the Thresholds Determined by GTRS

 The utility of player *j* corresponding to the strategy profile s that maps to (α_s, β_s) is given by,

$$u_j(s) = u_j(\alpha_s, \beta_s) \tag{13}$$

• Let
$$s_{-j} = \{s_1, s_2, ..., s_{j-1}, s_{j+1}, ..., s_n\}$$
,

- We may write $s = (s_j, s_{-j})$.
- The utility of player *j* becomes $u_j(s) = u_j(s_j, s_{-j}) = u_j(\alpha_{(s_j, s_{-j})}, \beta_{(s_j, s_{-j})}).$

On Semantic Issues in Game-theoretic Rough Set Model

The Game Outcome and the Determined Thresholds

- Interpreting the output or determined thresholds as solution concept of Nash equilibruim.
- Definition of determined thresholds with GTRS.

The GTRS determines a threshold pair that corresponds to a strategy profile $s = (s_1, s_2, ..., s_n) = (s_j, s_{-j})$ such that

$$u_{j}(\alpha_{(s_{j},s_{-j})},\beta_{(s_{j},s_{-j})}) \geq u_{j}(\alpha_{(s_{j}',s_{-j})},\beta_{(s_{j}',s_{-j})}),$$

where $(s_{j}^{'} \in S_{j} \land s_{j}^{'} \neq s_{j})$ (14)

On Semantic Issues in Game-theoretic Rough Set Model

Interpreting Herbert and Yao, (2011) Formulation

- The objective was to obtain effective region sizes.
- A competitive game was considered between the probabilistic region parameters α and β .
- The set of players in the game $P = \{\alpha, \beta\}.$
- Three strategies were considered for player 1, i.e. α .
 - The strategy set of player $1 = S_1 = \{s_1, s_2, s_3\}$, where
 - $s_1 = \text{decrease } \alpha \text{ by 5\%},$
 - $s_2 = \text{decrease } \alpha \text{ by 7\%, and}$
 - $s_3 = \text{decrease } \alpha \text{ by } 15\%$,
- Similar strategies were defined for player β .

Herbert, J.P., Yao, J.T. (2011). Game-theoretic rough sets. Fundamenta Informaticae 108, 267-286.

Universit

Interpreting the Strategies

- The strategies may be represented using equation 6.
- Considering the strategies of player α .

$$s_{1} = \{f_{1}^{1}(\alpha) = \alpha - c_{1} \times \alpha = \alpha(1 - 0.05) = 0.95\alpha, g_{1}^{1}(\beta) = \beta\}$$

$$s_{2} = \{f_{2}^{1}(\alpha) = \alpha - c_{2} \times \alpha = \alpha(1 - 0.07) = 0.93\alpha, g_{2}^{1}(\beta) = \beta\}$$

$$s_{3} = \{f_{3}^{1}(\alpha) = \alpha - c_{3} \times \alpha = \alpha(1 - 0.15) = 0.85\alpha, g_{3}^{1}(\beta) = \beta\}(15)$$

• The corresponding threshold pairs are given by,

$$s_{1} = (\alpha_{1}^{1}, \beta_{1}^{1}) = (0.95\alpha, \beta)$$

$$s_{2} = (\alpha_{2}^{1}, \beta_{2}^{1}) = (0.93\alpha, \beta),$$

$$s_{3} = (\alpha_{3}^{1}, \beta_{3}^{1}) = (0.85\alpha, \beta).$$
(16)

• Similar interpretation applies to strategies of β .

On Semantic Issues in Game-theoretic Rough Set Model

Interpreting the Strategy Profiles

• There were nine strategy profiles in this game.

$$S = S_1 \times S_2 = \{(s_1, s_1), (s_1, s_2), ..., (s_3, s_2), (s_3, s_3)\}.$$
 (17)

• Considering the profile (s_1, s_1) , we have

$$(s_1, s_1) = \{ H_{(s_1, s_1)}(\alpha_1^1, \alpha_1^2) = H_{(s_1, s_1)}(0.95\alpha, \alpha), \\ O_{(s_1, s_1)}(\beta_1^1, \beta_1^2) = O_{(s_1, s_1)}(\beta, 1.05\beta) \}$$
(18)

• The threshold pair corresponding to (s_1, s_1) was determined as,

$$H_{(s_1,s_1)}(\alpha_1^1,\alpha_1^2) = 0.95\alpha, \quad O_{(s_1,s_1)}(\beta_1^1,\beta_1^2) = 1.05\beta.$$
(19)

• Final threshold values may be determined using the Nash equilibrium solution as defined in Equation 14

Iniversity

Conclusion

- Existing GTRS based formulations and approaches extended the applicability of the model.
- The differences in treatment of game components and determination of thresholds may lead to possible confusions and misinterpretation.
- We address some semantic issues related to the interpretation of game components and the determination of thresholds with GTRS.
- It is hoped that this will improve the understandability of GTRS.
 - Ultimately leading to more interesting applications.

Rough Sets Probabilistic Rough Sets Game-theoretic Rough Sets Semantic Issues in GTRS Interpreting an Existing Formulation

Questions?

On Semantic Issues in Game-theoretic Rough Set Model

Nouman Azam and JingTao Yao