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Text Summarization

Text Summarization is the process of reducing text documents while
retaining important information.
Applications

Web Content Mining.

Financial Reports.

JistWeb.

News Stories.

Online Blogs.
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Existing Text Summarization Methods

Broad categories of text summarization methods:

Abstractive Summarization (Pourvali and Abadeh, 2012)

Extractive Summarization (Pourvali and Abadeh, 2012)

Inductive Summarization (Pourvali and Abadeh, 2012)

Each of these categories has further different types and methods developed
for them in Literature.

Pourvali and Abadeh, Automated Text Summarization Based on Lexicales Chain and graph Using of WordNet IJCSI 2012.
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Problem Statement

Rough Sets has been utilized in several fields.

Data Mining (Hung Son, 2010)

Feature Selection (Megala and Kavitha, 2014)

Conflict Analysis (Yao and Yan, 2007)

Text Mining (Thanh,Yamada, and Unehara, 2011)

We aim to explore rough sets for text summarization.
WHY?
There is no such investigation in existing literature.

Hung Son,Introduction to rough sets and data mining (2010).
Megala and Kavitha,Feature extraction based legal document summarization (2014)
Yao and Zhao, Conflict analysis based upon Indiscernibility and Discernibility,IEEE Computational Intelligence (2007)
Thanh, Yamada and Unehara,A Similarity Rough Set Model for Document Representation and Clustering (2011)
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Contribution

We considered three different types of set relations to generate summaries
of text documents based on rough sets.

Discernibility Relation.

Indiscernibility Relation.

Equal To one Relation.
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Rough Sets

Rough sets deal with information represented in the form of information
table. Information table is formally represented as,

S = (U,At, {Va|a ∈ At}, {Ia|a ∈ At})
U is a finite non empty set of objects called universe.

At is finite non empty se of attributes.

Va is non empty set of values for a ∈ At.

Ia : U → Va is an information function.

Azam and Ahmad (NUCES-FAST) Text Summarization Using Rough Sets April 7, 2016 7 / 32



Demostrative Example

Information table contain words in rows (Objects) and sentences in
columns (attributes).

Value 0 shows absence of a word in respective sentence.

Value 1 represents presence of a word.

Table: Information Table

S1 S2 S3 S4 S5

W1 1 0 1 1 0
W2 1 1 0 0 0
W3 1 0 1 0 1
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Discernibility Matrix

Discernibility Relation

D = {a ∈ At|Ia(x) 6= Ia(y), (x , y) ∈ U}

Table: Discernibility Matrix

U ∗ U W1 W2 W3

W1 - S2,S3,S4 S4,S5
W2 - - S2,S3,S5
W3 - - -
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Indiscernibility Matrix

Indiscernibility Relation

I = {a ∈ At|Ia(x) = Ia(y), (x , y) ∈ U}

Table: Indiscernibility Matrix

U ∗ U W1 W2 W3

W1 S1,S2,S3,S4,S5 S1,S5 S1,S2,S3
W2 - S1,S2,S3,S4,S5 S1,S4
W3 - - S1,S2,S3,S4,S5
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Equal To One Matrix

Equal to one Relation

O = {a ∈ At|Ia(x) = Ia(y) = 1, (x , y) ∈ U}

Table: Equal to one Matrix

U ∗ U W1 W2 W3

W1 S1,S3,S4 S1 S1,S3
W2 - S1,S2 S1
W3 - - S1,S3,S5
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Matrix Simplification Operations

Matrix Absorption(Yao and Zhao, 2009)

The matrix absorption operation is a sequence of all possible element
absorption operations on pair of elements whenever the following condition
holds:

φ 6= M(x ‘, y ‘) ⊂ M(x , y)

After matrix absorption, no element in the matrix is proper subset of
another element.
Element Deletion(Yao and Zhao, 2009)

For an attribute a ∈ At, the attribute deletion operation deletes {a} from
all the elements if the following condition holds:

∀(M(x , y) 6= φ)(M(x , y)− {a}) 6= φ

Yao and Zhao,Discernibility matrix simplification for constructing attribute reducts,Information Sciences(2009)
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Example

Let us suppose a Discernibility Matrix:
φ
φ φ

{a, b, f } {c , d , f } {b, e, f }
{a, c} {b, d} {c , e} φ

{a, d} {b, c} {d , e} φ φ


We want to find out minimum number of attributes which will
preserve a particular relation i.e Discernibility relation.

For this purpose we will iteratively apply element deletion and
absorption operations until we obtain a minimum matrix.
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Matrix Absorption

The first iteration of row-wise simplification causes no change because no
subset is available.

φ
φ φ

{a, b, f } {c , d , f } {b, e, f }
{a, c} {b, d} {c , e} φ

{a, d} {b, c} {d , e} φ φ
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Element Deletion

Let A = {b, f } and M(4, 1) = {a}. We simplify part B into:
φ
φ φ
{a} {c , d} {e}
{a} {d} {c , e} φ

{a} {c} {d , e} φ φ
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Second Itteration

The second iteration of row-wise simplification absorbs M(4, 2) by B:
φ
φ φ
{a} {d} {e}
{a} {d} {c, e} φ

{a} {c} {d , e} φ φ


Let A = φ and M(4, 2) = {d}. We simplify part B into:

φ
φ φ
{a} {d} {e}
{a} {d} {c, e} φ

{a} {c} {d} φ φ


After three iterations original matrix is simplified into minimum matrix
which produces a reduct {a, c, d, e}.
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Reducts

Reducts are the subset of attributes R ⊆ Attributes if R meets following
Conditions (Yao and Zhao, 2009)

For Discernibility Relation

DIS(R) = DIS(At)

For any a ∈ R,DIS(R − {a}) 6= DIS(At)

For Indiscernibility Relation

IND(R) = IND(At)

For any a ∈ R,DIS(R − {a}) 6= DIS(At)

For Equal To one Relation

O(R) = O(At)

For any a ∈ R,O(R − {a}) 6= O(At)

Yao and Zhao,Discernibility matrix simplification for constructing attribute reducts, Information Sciences(2009)
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Reduct Construction Algorithm

Figure: A row-wise simplification reduct construction algorithm

Azam and Ahmad (NUCES-FAST) Text Summarization Using Rough Sets April 7, 2016 18 / 32



Evaluation Measures

Summref refers to the summary of text constructed by other
summarization systems i.e Microsoft word Summarizer, Auto
summarizer (Pourvali and Abadeh, 2012)

Summcand is the summary of our proposed method (Pourvali and Abadeh,

2012)

F1 Measure combines both precision,recall and takes their harmonic
mean (Pourvali and Abadeh, 2012)

Precision = (Summref ∩ Summcand)/Summcand

Recall = (Summref ∩ Summcand)/Summref

F1 = 2(Precision)(Recall)/Precision + Recall

Pourvali and Abadeh, Automated Text Summarization Base on Lexicales Chain and graph Using of WordNet, IJCSI (2012)
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Comparison With Lexical Chains (elhadad)

Table: Results For Comparison With Lexical Chains Method

Our Method Precision Recall F1

Equal to one Relation 0.4 0.45 0.42
Discernibility Relation 0.31 0.38 0.34

Indiscernibility Relation 0.21 0.27 0.22

http://www.cs.bgu.ac.il/ elhadad/summary-test.html
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Bar Graph of F1 Measure
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Comparison With Auto Summarization Toolkit (tools4noobs)

Table: Results For Comparison With Auto Text Summarizer Toolkit

Our Method Precision Recall F1

Equal to one Relation 0.58 0.52 0.53
Discernibility Relation 0.47 0.42 0.43

Indiscernibility Relation 0.29 0.23 0.25

http://www.tools4noobs.com/summarize/
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Bar Graph of F1 Measure
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Comparison With Microsoft Summarizer

Table: Results For Comparison With Microsoft Word Summarizer Tool

Our Method Precision Recall F1

Equal to one Relation 0.6 0.53 0.56
Discernibility Relation 0.46 0.43 0.44

Indiscernibility Relation 0.27 0.22 0.23
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Bar Graph of F1 Measure

Figure: F1 Measures
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Conclusion

Results advocate that Rough Sets can play essential role in text
summarization.

There exist similarities between our summaries and three other
systems which make our method reliable.

Equal to one relation has high similarity ratio when compared with
other summarization systems.

After Equal to one relation, discernibility has high similarity ratio.

Indiscernibility has the minimum similarity ratio.
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Future Work

This method can be extended for Multi Document Summarization
system.

We have several other types of set relationships on the basis of which
we can generate summaries.

Several other Reduct construction algorithms have been developed

Discernibility Function (Yao and Zhao, 2009)

Indiscernibility Fuction (Yao and Zhao, 2009)

Deletion algorithm for Reduct Construction(Yao and Zhao, 2009)

addition algorithm for reduct calculation (Yao and Zhao, 2009)

Yao and Zhao,Discernibility matrix simplification for constructing attribute reducts, Information Sciences(2009)
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additional notes

Sets from imperfect, imprecise, incomplete data may not be precisely
defined they have to be approximated these approximations are of three
types:
1. Lower approximation and Positive Region

LowerApproximation = {Xi ∈ Ui [Xi ] ⊂ X}

2. Upper approximation and Negative Region

UpperApproximation = {Xi ∈ Ui [Xi ] ∩ X 6= 0}

3. Boundary Region

BoundaryRegion = UpperApproximation − LowerApproximation
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additional notes

To understand these approximations let us explain an example suppose we
have an information Table below:

Table: Information Table

[U/A] a1 a2 a3

{X1,X3,X9} 2 1 3
{X2,X7,X10} 3 2 1
{X4} 2 2 3
{X5,X8} 1 1 4
{X6} 1 1 2
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additional notes

Suppose a target set X

X = {x1, x3, x4, x5, x9}

Lower approximation for X:

LowerApproximation = {x1, x3, x9} ∪ {x4}
LowerApproximation = {x1, x3, x4, x9}

Upper approximation for X is:

upperApproximation = {x1, x3, x9} ∪ {x4} ∪ {x5, x8}
UpperApproximation = {x1, x3, x4, x5, x8, x9}

Boundary Region for X is:

Boundary = {x1, x3, x4, x5, x8, x9} − {x1, x3, x4, x9}
Boundary = {x5, x8}
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additional notes

Figure: Rough Sets approximation Granules
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