A Three-way Decision Making Approach to Malware Analysis

Mohammad Nauman^a, Nouman Azam^a and JingTao Yao^b

^aNational University of Computer and Emerging Sciences, Peshawar, Pakistan ^bDepartment of Computer Science, University of Regina

> [mohammad.nauman,nouman.azam]@nu.edu.pk jtyao@cs.uregina.ca

November 17, 2015

Introduction

- The protection of digital devices from illegal use is an important issues for obvious reasons.
 - Protection of personal data.
 - Protection of enterprise data.
 - Protection of governmental data.
- Malware Analysis: The set of techniques and tools used to ensure protection of digital devices.
- A recent increase in targeted attacks.
 - In 2013, a 91% increase in targeted attack campaigns (Sem., 2015).
 - No less than 38% users have experienced mobile cyber crime in 2014 and 2015 (Sem., 2015).
- **Challenge:** Investigation of effective techniques for detecting malicious activity on digital devices.

Symantec Inc., 2015. Internet security threat report, volume 19. Accessed: Apr 12, 2015, http://www.symantec.com/security response/publications/threatreport.jsp.

An Issue with Existing Malware Analysis Techniques

Introduction

- **Existing approaches:** They are generally based on two-way classification of application behaviour.
 - An application behaviour is either classified as being malicious (harmful) or benign (not harmful).
- The two-way classification may not be effective in many cases.
 - A malicious application occasionally behaving like benign (for deceiving the analysis engine). This may lead to ambiguous information not sufficient for precise classification.
 - **Problem:** The two-way approaches are based on classifying every case. We may misclassify the cases with low quality of associated information.
- We propose and examine three-way decision making approach for malware analysis.
 - The rationale is to defer the classification decisions of cases that have low level of associated information.

Introduction

Three-way Decision Approach to Malware Analysis

- Three-way decisions are based on three decisions of,
 - acceptance,
 - rejection,
 - deferment.
- The deferment decision option provides benefits in at least two aspects.
 - More flexible compared to two-way \rightarrow immediate decisions versus deferment.
 - Provides a mechanism for explicitly identifying the cases with low quality of information.
- We consider rough sets based three-way approaches.

Rough Sets

- Sets from imperfect, imprecise and incomplete data may not be precisely defined.
 - Sets have to be approximated.
- Approximating a concept C with objects in U (Pawlak 1982).
 - Lower approximation given by $apr(C) = \{x \in U | [x] \subseteq C\}$,
 - Upper approximation given by $\overline{\overline{apr}}(C) = \{x \in U | [x] \cap C \neq \phi\}.$
- Three regions may be defined using these approximations.

•
$$POS(C) = \underline{apr}(C)$$
,

•
$$BND(C) = \overline{apr}(C) - \underline{apr}(C)$$
,

• $NEG(C) = (\overline{apr}(C))^c$.

Probabilistic Rough Sets (PRS)

- Restrictness of the Pawlak model.
 - The degree of an overlap between [x] and C is not considered.
 - Strict conditions for inclusion in positive and negative regions.
- Probabilistic rough sets (PRS) (Yao, 2008).
 - Considers the overlap between [x] and C in the form of conditional probability.
 - Pair of thresholds (α, β) are used to define approximations (Yao, 2008).

•
$$apr_{(\alpha,\beta)}(C) = \bigcup \{x \in U \mid Pr(C|[x]) \ge \alpha \},\$$

- $\overline{\overline{apr}}_{(\alpha,\beta)}^{(\alpha,\beta)}(C) = \bigcup \{x \in U \mid Pr(C|[x]) > \beta \}.$
- Probabilistic positive, negative and boundary regions,
 - $POS_{(\alpha,\beta)}(C) = \{x \in U \mid Pr(C|[x]) \geq \alpha\},\$
 - $NEG_{(\alpha,\beta)}(C) = \{x \in U \mid Pr(C|[x]) \leq \beta\},\$
 - $BND_{(\alpha,\beta)}(C) = \{x \in U \mid \beta < Pr(C|[x]) < \alpha\}.$

PRS Models and Approaches

- PRS Models.
 - Decision-theoretic rough sets (Yao & Wong, 1992).
 - Variable precision rough sets (Ziarko, 1992).
 - 0.5-probabilistic rough sets (Pawlak, 1988).
 - Information-theoretic rough sets (Deng & Yao, 2012).
 - Game-theoretic rough sets (Yao & Herbert, 2008).
- Approaches to determination of (α, β) thresholds.
 - Optimization viewpoint (Jia et al., 2011).
 - Multi-view model (Li & Zhou, 2011).
 - Method using probabilistic model criteria (Liu et al., 2011).

Jia, X. Y., Li, W. W., Shang, L., & Chen, J. J., (2011). An optimization viewpoint of DTRS. In: (RSKT'11).
Li, H.X., & Zhou, X.Z., (2011). Risk decision making based on DTRS... JICIS 4.
Liu, D., Li, T.R., & Ruan, D., (2011). Probabilistic model criteria with DTRS. Information Science 181.
Deng, X. F., & Yao, Y. Y., (2012). An information-theoretic interpretation of thresholds in PRS. In: (RSCTC'12).
Yao, J.T., & Herbert, J.P., (2008). A game-theoretic perspective on rough sets. JCUPT, 20(3).
Pawlak, Z., Wong, S. K. M., & Ziarko, W., (1988). Rough sets: probabilistic versus ... JIMMS 29(1).
Ziarko, W., (1993). Variable precision rough set model. Journal of Computer and System Sciences, 46(1).
Yao, Y. Y., & Wong, S. K. M., (1992). A decision theoretic framework for approximating concepts. JIMM 7. REGIMA

A Key in PRS: Determination of Thresholds

- User's or expert's opinion about the thresholds may involve several error and trails (Herbert, 2010).
 - Moreover, one can not set thresholds once and for all.
- Needing a scientific method to determine thresholds (Herbert, 2010).
- The GTRS approach for threshold determination.
 - Provides threshold determination mechanism based on a game involving an often contradictive criteria (or properties) (Yao &

Herbert, 2008; Herbert & Yao, 2011; Azam & Yao, 2014; Zhang and Yao, 2012).

- The ITRS approach for threshold determination.
 - Determining an effective configuration of thresholds by minimizing the overall uncertainty of probabilistic rough sets regions using the measure of Shannon Entropy (Deng & Yao, 2012; Deng & Yao, 2014).

Herbert, J.P., & Yao, J.T., (2011). Game-theoretic rough sets. Fundamenta Informaticae, 108(3-4).
Yao, J.T., & Herbert, J.P., (2008). A game-theoretic perspective on rough sets. JCUPT, 20(3).
Azam, N., & Yao J. T. (2014). Analyzing uncertainties of PRS regions with GTRS. IJAR, 55(1).
Yao, J. T., & Azam, N. (2014a). Three-way Decision Making in WMDSS with GTRS. IEEE TFS.
Zhang, Y., & Yao J. T. (2012). Rule measure tradeoff using GTRS. In: B¹12.
Deng, X. F., & Yao, Y. Y., (2012). An information-theoretic interpretation of thresholds in PRS. In: (RSC 12).
REGINA

The GTRS Approach for Threshold Determination

- A specific (α, β) pair represents a particular rough set model.
 - (α, β) = (1,0) = Pawlak model and (α = β) = probabilistic two-way model.
- Choosing a best or better rough set model based on some properties, such as, accuracy and generality.
- However, some of these properties may have a conflict.
 - Increasing one may decrease the other.
 - Accuracy versus generality in the Pawlak model and probabilistic model.
- Examining such properties to produce a pair of (α, β) in a game setting.

A Typical Game in Game Theory

- Game theory is a core subject in decision sciences.
- The basic game components include.
 - Players.
 - Strategies.
 - Payoffs.
- A classical example in Game Theory: The prisoners dilemma.

		<i>p</i> ₂					
		confess	don't confess				
	confess	p_1 serves 10 years,	p_1 serves 0 year,				
-		p_2 serves 10 years	p_2 serves 20 years				
ρ_1	don't confess	p_1 serves 20 years,	p_1 serves 1 year,				
		p_2 serves 0 year	p_2 serves 1 year				

A Typical Game in GTRS: Accuracy Versus Generality

- Players: Accuracy versus Generality.
- **Strategies:** Three types of strategies were formulated for each player.
 - s_1 (α_{\downarrow} , decrease of α),
 - s_2 (β_{\uparrow} , increase of β),
 - s_3 ($\alpha_{\downarrow}\beta_{\uparrow}$, decrease of α and increase of β).
- **Payoffs:** They are based on the measure of accuracy and generality.
 - $u_A(s_m, s_n) = Accuracy(\alpha, \beta).$
 - $u_G(s_m, s_n) = Generality(\alpha, \beta).$

		Introduction 000	Three-way Approaches	Malware Architecture with Three-way Approaches	A Demonstrative Example
--	--	---------------------	----------------------	--	-------------------------

The Game in the Payoff Table

			G	
		$s_1 = lpha_\downarrow$	$s_2=eta_\uparrow$	$s_3=lpha_{\downarrow}eta_{\uparrow}$
	$s_1 = \alpha_\downarrow$	$u_A(s_1,s_1), u_G(s_1,s_1)$	$u_A(s_1,s_2),u_G(s_1,s_2)$	$u_A(s_1,s_3), u_G(s_1,s_3)$
A	$s_2=eta_\uparrow$	$u_A(s_2,s_1), u_G(s_2,s_1)$	$u_A(s_2,s_2), u_G(s_2,s_2)$	$u_A(s_2,s_3), u_G(s_2,s_3)$
	$s_3 = lpha_{\downarrow} eta_{\uparrow}$	$u_A(s_3,s_1), u_G(s_3,s_1)$	$u_A(s_3,s_2), u_G(s_3,s_2)$	$u_A(s_3,s_3), u_G(s_3,s_3)$

The ITRS Approach for Threshold Determination

- The PRS regions have a degree of uncertainty (Deng & Yao, 2014).
 - Acceptance/rejection decisions are made with uncertainty.
- **ITRS approach:** Configuring the thresholds in order to optimize the overall uncertainty of the PRS.
 - The (α,β) thresholds control the uncertainty of the regions.

Calculating the Uncertainty in the Probabilistic Regions

- Measuring uncertainty in probabilistic regions.
 - Considering a partition based on a concept C, $\pi_C = \{C, C^c\}$.
 - Another partition based on the (α,β) thresholds,
 - $\pi_{(\alpha,\beta)} = \{ \mathsf{POS}_{(\alpha,\beta)}(C), \mathsf{NEG}_{(\alpha,\beta)}(C), \mathsf{BND}_{(\alpha,\beta)}(C) \}.$
 - Uncertainty in $\pi_{C} = \{C, C^{c}\}$ with respect to the three regions.
 - Using Shannon entropy (Deng & Yao, 2012).
 - E.g., the uncertainty in π_C due to positive, negative and boundary regions are,

$$\begin{split} \Delta_{P}(\alpha,\beta) &= H(\pi_{C}|\mathsf{POS}_{(\alpha,\beta)}(C)) &= -P(C|\mathsf{POS}_{(\alpha,\beta)}(C)) \log P(C|\mathsf{POS}_{(\alpha,\beta)}(C)) \\ &- P(C^{c}|\mathsf{POS}_{(\alpha,\beta)}(C)) \log P(C^{c}|\mathsf{POS}_{(\alpha,\beta)}), \\ \Delta_{N}(\alpha,\beta) &= H(\pi_{C}|\mathsf{NEG}_{(\alpha,\beta)}(C)) &= -P(C|\mathsf{NEG}_{(\alpha,\beta)}(C)) \log P(C|\mathsf{NEG}_{(\alpha,\beta)}(C)) \\ &- P(C^{c}|\mathsf{NEG}_{(\alpha,\beta)}(C)) \log P(C^{c}|\mathsf{NEG}_{(\alpha,\beta)}), \\ \Delta_{B}(\alpha,\beta) &= H(\pi_{C}|\mathsf{BND}_{(\alpha,\beta)}(C)) &= -P(C|\mathsf{BND}_{(\alpha,\beta)}(C)) \log P(C|\mathsf{BND}_{(\alpha,\beta)}(C)) \\ &- P(C^{c}|\mathsf{BND}_{(\alpha,\beta)}(C)) \log P(C^{c}|\mathsf{BND}_{(\alpha,\beta)}), \end{split}$$

Deng, X. F., & Yao, Y. Y., (2012). An information-theoretic interpretation of thresholds in PRS. In: (RSC 12) UVERSITY OF REGINA

Overall Uncertainty of the PRS

• The overall uncertainty is determined as the weighted average.

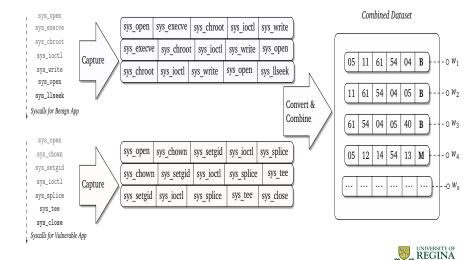
$$\Delta(\alpha,\beta) = P(POS_{(\alpha,\beta)}(C)) * \Delta_P(\alpha,\beta) + P(NEG_{(\alpha,\beta)}(C)) * \Delta_N(\alpha,\beta) + P(BND_{(\alpha,\beta)}(C)) * \Delta_B(\alpha,\beta)$$

- Configuring the thresholds to decrease the uncertainty of a particular region may increase the uncertainty of some other region.
- Consider optimization of the above equation based on (α, β) thresholds.

An Architecture for Malware Analysis with Three-way Decisions

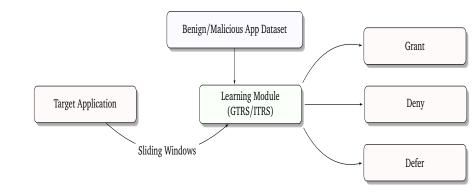
- We propose an architecture for malware analysis with three-way decisions.
 - The architecture is based on capturing and analysing the system call sequences of applications.
 - These system call sequences are converted to chunks using sliding window.
 - Each of these chunks are used as a row (object) of an information table.
 - Three-way decision models are then trained on the information table and three-way decisions are obtained.

Sliding Windows for Capturing System Call Sequences



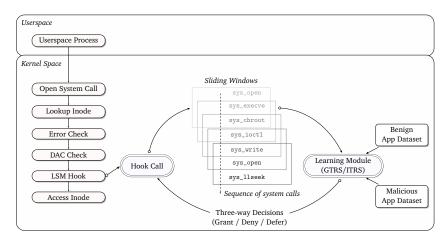
17/27

High Level View of the Proposed Architecture



A Demonstrative Example

Detailed View of the Proposed Architecture



System Call Sequences with Class Labels

Window	s_1	<i>s</i> ₂	<i>s</i> 3	s ₄	<i>s</i> 5	Behavior	Window	s_1	<i>s</i> ₂	<i>s</i> 3	s ₄	<i>s</i> 5	Behavior
w1	106	106	106	106	106	М	w2	125	5	5	3	90	В
w3	125	5	5	3	90	М	w ₄	106	5	90	6	5	В
W5	106	106	106	106	106	М	w ₆	125	5	5	3	90	М
W7	3	90	90	90	6	В	w ₈	3	90	90	90	6	М
w ₉	106	5	90	6	5	М	w ₁₀	125	5	5	3	90	М
w ₁₁	125	5	5	3	90	М	w ₁₂	5	108	3	19	6	В
w ₁₃	108	3	19	6	33	В	w ₁₄	108	3	19	6	33	М
w15	3	90	90	90	6	М	w16	3	90	90	90	6	М
w ₁₇	106	5	90	6	5	М	w ₁₈	3	6	5	108	3	В
w19	5	108	3	19	6	В	w ₂₀	5	108	3	19	6	М
w ₂₁	125	5	5	3	90	В	W22	45	45	5	108	45	В
w ₂₃	45	45	5	108	45	М	w ₂₄	3	6	5	108	3	В
w ₂₅	3	6	5	108	3	В	w ₂₆	3	6	5	108	3	М
w ₂₇	125	5	5	3	90	В	w ₂₈	6	5	108	3	19	В
W29	3	6	5	108	3	М	w30	45	45	5	108	45	В
w ₃₁	5	108	3	19	6	В	w ₃₂	6	5	108	3	19	В

- Considering the above table as information table.
- The rows corresponds to sliding windows of system calls.
- The columns contain the system call no.s as defined in OS.
- The last column represent the associated behaviour.

NIVERSITY OF

• The following equivalence classes may be created based on the information table.

$$\begin{array}{ll} X_1 = \{w_1, w_5\} & X_2 = \{w_7, w_8, w_{15}, w_{16}\} \\ X_3 = \{w_4, w_9, w_{17}\} & X_4 = \{w_2, w_3, w_6, w_{10}, w_{11}, w_{21}, w_{27}\} \\ X_5 = \{w_{13}, w_{14}\} & X_6 = \{w_{18}, w_{24}, w_{25}, w_{26}, w_{29}\} \\ X_7 = \{w_{22}, w_{23}, w_{30}\} & X_8 = \{w_{12}, w_{19}, w_{20}, w_{31}\} \\ X_9 = \{w_{28}, w_{32}\} \end{array}$$

- Considering the concept of interest as Behaviour = M,
 - The conditional probabilities of the concept with X_i is, $P(C|X_i) = P(Behaviour = M|X_i) = \frac{|Behaviour = M \cap X_i|}{|X_i|}.$
 - The probability of X_i 's are given by $P(X_i) = \frac{|X_i|}{|U|}$.

	X1	X ₂	X ₃	X4	X ₅	X ₆	X7	X ₈	X ₉	
$P(C X_i)$	1.0	0.75	0.67	0.57	0.5	0.4	0.33	0.25	0.0	
$P(X_i)$	0.0625	0.125	0.09375	0.21875	0.0625	0.15625	0.09375	0.125	0.0625	
									REG	SITY C INA

Introduction

Three-way Decisions based on GTRS

- Considering a game between Accuracy and Generality.
 - These can be defined as,

$$Accuracy(\alpha,\beta) = \frac{|(\mathsf{POS}_{(\alpha,\beta)}(C) \cap C) \bigcup (\mathsf{NEG}_{(\alpha,\beta)}(C) \cap C^c)|}{|\mathsf{POS}_{(\alpha,\beta)}(C) \bigcup \mathsf{NEG}_{(\alpha,\beta)}(C)|},$$

Generality(\alpha, \beta) = $\frac{|\mathsf{POS}_{(\alpha,\beta)}(C) \bigcup \mathsf{NEG}_{(\alpha,\beta)}(C)|}{|U|},$

- Three types of strategies were formulated for each player.
 - s_1 (α_{\downarrow} , decrease of α by 20%),
 - s_2 (β_{\uparrow} , increase of β by 20%),
 - s_3 ($\alpha_{\downarrow}\beta_{\uparrow}$, decrease of α and increase of β by 20%).
- The payoffs are based on the measure of accuracy and generality.
 - $u_A(s_m, s_n) = Accuracy(\alpha, \beta).$
 - $u_G(s_m, s_n) = Generality(\alpha, \beta).$

22/27

Payoff Table for the Game

			G	
		$s_1 = \alpha_{\downarrow}$ = 20% dec. α	$s_2=eta_{\uparrow}$ = 20% inc. $_{eta}$	$\begin{array}{c} \mathbf{s_3} = \alpha_{\downarrow} \beta_{\uparrow} \\ = 20\% \ (\text{dec. } \alpha \& \text{ inc.} \\ \beta) \end{array}$
	$s_1 = lpha_{\downarrow}$ = 20% dec. $lpha$	(0.82,0.34)	(1.0,0.13)	(0.82,0.34)
Α	$s_2=eta_{\uparrow}$ = 20% inc. $_{eta}$	(1.0,0.13)	(0.75,0.50)	(0.75,0.50)
	$s_3 = lpha_{\downarrow} eta_{\uparrow} = 20\%$ (dec. $lpha$ & inc. eta)	(0.82,0.34)	(0.75,0.50)	(0.74,0.72)

- The cell with bold font represents the game solution.
- The corresponding thresholds are $(\alpha, \beta) = (0.6, 0.2)$.
- These thresholds can be used to induce three-way decisions.

Introduction

Three-way Decisions based on ITRS

- ITRS determine thresholds for three-way decisions based on minimization of the overall uncertainty.
 - The uncertainty of a particular region, say positive region may be determined as,

$$\begin{split} \Delta_{\mathcal{P}}(\alpha,\beta) &= \textit{H}(\pi_{\mathcal{C}}|\textit{POS}_{(\alpha,\beta)}(\mathcal{C})) \quad = -\textit{P}(\mathcal{C}|\textit{POS}_{(\alpha,\beta)}(\mathcal{C})) \log \textit{P}(\mathcal{C}|\textit{POS}_{(\alpha,\beta)}(\mathcal{C})) \\ &\quad -\textit{P}(\mathcal{C}^{c}|\textit{POS}_{(\alpha,\beta)}(\mathcal{C})) \log \textit{P}(\mathcal{C}^{c}|\textit{POS}_{(\alpha,\beta)}), \end{split}$$

• For the considered information table,

$$P(C|\text{POS}_{(1,0)}(C)) = \frac{\sum_{i=1}^{1} P(C|X_i) * P(X_i)}{\sum_{i=1}^{1} P(X_i)} = \frac{1 * 0.0625}{0.0625} = 1.0$$
(1)

- The probability $P(C^{c}|POS_{(1,0)}(C)) = 1 P(C|POS_{(1,0)}(C)) = 1 1 = 0.$
- Therefore, $H(\pi_C | POS_{(1,0)}(C)) = -1 * log 1 (0 * log 0) = 0.$
- The uncertainty for other regions can be similarity obtained

Introduction

Three-way Decisions based on ITRS

- To determine a minimum value of uncertainty, we consider the domains of thresholds based on majority oriented model given by $0 \le \beta < 0.5 \le \alpha \le 1.0$.
 - This leads to the domain of α , i.e., $D_{\alpha} = \{1.0, 0.7, 0.6, 0.5\}$ and domain of β , i.e., given by $D_{\beta} = \{0.0, 0.3, 0.4\}$.

			lpha= 0.6	
$\beta = 0.0$	0.875	0.8680	0.8607	0.8606 0.8768 0.8937
$\beta = 0.3$	0.8682	0.8688	0.8661	0.8768
$\beta = 0.4$	0.8544	0.8665	0.8704	0.8937 /

- The cell with bold font represents the minimum uncertainty which corresponds to $(\alpha, \beta) = (0.6, 0.2)$.
- These thresholds can be used to induce three-way decisions.

Conclusion and Future Work

• Conclusions

- We consider a three-way decision making approach to malware analysis.
- Essential change is the deferment decision option.
 - Useful for decision making under low quality information.
- An architecture for malware analysis with three-way decisions.
- A demonstrative example suggest that use of the suggested approach.
- Future Work.
- Deployment of the three-way approach on the production systems.
 - This will enable us to measure efficiency on large scale.
- Examination in the context of lastest technology.
 - Smartphones, tablets and other digital devices.

Questions?

JingTao Yao, PhD

姚静涛

Professor DEPARTMENT OF COMPUTER SCIENCE

University of Regina

Regina, Saskatchewan Canada S4S 0A2 phone: 306.585.4071 fax: 306.585.4745 email: jtyao@cs.uregina.ca http:/www.cs.uregina.ca/~jtyao

